4 Common Application
Modernization

Application modernization can be hard. We'll take a look at some of
the anti-patterns of application modernization to avoid in order to
succeed with your strategy.

A team can set out to do 'just enough'’ An application modernization
to modernize their application suite by Initiative should transform the entire
simply lifting-and-shifting it from digital backbone to support and grow
on-premises or co-located servers to the organization far into the future.
cloud infrastructure.

Teams drive down labor and service costs
Incurred through constantly maintaining
software estates, reducing issue resolution

The brute-force migration of code and costs, SLA or regulatory penalties, labor spent
data that were never intended for a managing disruptive upgrades, and paying
future of elastic capacity and capex to expand and reserve ever-increasing
microservices agility would fail to deliver Infrastructure to meet usage demands.

the expected benefits of cloud
modernization.

Cost-based valuation scenarios will limit
the scope of available improvements to
whatever is most expedient.

Only making cosmetic changes to a user

Interface isn’t really modernizing at all. : : :
Most companies still value top-line

revenue growth over cost-cutting.

Resolving and refactoring memory Modernization efforts and tooling can be
and CPU usage, synchronization prioritized for quick wins on the revenue
and data states can untangle and productivity side that also
knots that accelerate the contribute to faster release cycles
modernization push. and better long-term results.

4 Common
Application
Modernization

Failures to
Avoid

Dependencies
and technical

Scars From
Past
Failures

4

Technical debt robs the
business of agility and throws

sand in the gears of any
application modernization effort.

Failure is the only
intergenerational constant
In software development
and integration. When 79%
of application modemization
projects fail at a cost of
$1.5m and 16 months of work

days, why try harder? The day a piece of code is promoted to

production, it becomes legacy code. Fast
forward 10 years and you find that the
technology stacks the code was written for
encountered generational shifts and most
of the team members that wrote the
software will have already moved on.
Initiating an application modernization
initiative without intelligent tools for
assessing and automating refactoring
inevitably leads to burnout and people
leaving the project or company.
Employees bear the scars of past
modernization trials.

"Lift and shift" is seldom a good option for
dealing with such dependeties due to ongoing
business activity. It is incumbent upon the IT
team to generate quick wins by decoupling the
software suite at a more granular level and
service-enabling one function at a time.

All of the appropriate stakeholders of

modernization within the Extracting valuable intellectual
organization and its partners should property-in the form of business logic
be aligned around a common source and processes from existing systems-also
of truth, progressive delivery, and allows the business to realize continued
setting a regular cadence of quicker value from that IP after modernization.

functional wins.

Once you scratch the surface on any complex
critical application, there are far too many
moving parts for humans to perceive and

Rather than setting a big-bang replatforming address at once. Correlating the threads of an
requirement that may seem too daunting to e)isting Java Struts application with its big-iron
reach, many companies instead opt for backend to say, an API-driven Spring Boot or
service level objectives (or SLOS) that Kubernetes architecture that talks to a cloud
improve fidelity and performance over time. data lake requires factory-level automation.

The counterintuitive secret of
application modernization success?

Even the best-performing teams will inevitably encounter some failures on
their way to a future state of a modern, scalable and agile application
estate. But teams that use a data-driven and automated strategy for
application modernization will be in a better position to understand and
manage the risk and iterate much more intelligently and quickly.

And that brings us full circle. The modernization journey of a thousand apps
starts with just one service.

About vFunction

vFunction is the first and only Al-driven platform for architects and developers and architects
that intelligently and automatically transforms complex monolithic Java applications into
microservices, restoring engineering velocity and optimizing the benefits of the cloud.
vFunC'l-ion Designed to eliminate the time, risk and cost constraints of manually modernizing business
applications, vFunction delivers a scalable, repeatable factory model purpose-built for cloud
native modernization. With vFunction, leading companies around the world are accelerating
the journey to cloud-native architecture and gaining a competitive edge. vFunction is
Request a Demo » headquartered in Palo Alto, CA, with offices In Israel. To learn more, visit vFunction.com.

